

High-Energy X-ray Enhancement Possibilities from an APS Upgrade

Dean R. Haeffner
Advanced Photon Source
Argonne National Laboratory

August 11, 2006

High-Energy X-rays

Working definition **∠** Photons between 35 - 200 keV 50 - 120 keV

- Low Absorption
 - Bulk measurements
 - Special environments
 - Furnaces
 - Reaction cells
 - Cryostats
 - High-pressure cells
 - Often comparable to neutrons
- Simplified Scattering Processes
 - Kinematical diffraction
 - Small absorption, polarization, & dispersion corrections
- Small Diffraction Angles
 - Large Q range

Applications of High-Energy X-rays

```
Stress/strain/texture measurements
Small-angle scattering
3-Dimensional x-ray diffraction microscopy (3DXRM) (i.e., grain tracking)
PDF
     Includes high-pressure
Powder diffraction
     High-resolution (point counting)
     Time-resolved (area detectors)
Diffuse scattering
Triple-axis diffractometry
Fluorescence measurements
Imaging
     Tomography
     Radiography
Combinations of the above
```


SAXS/WAXS

Imaging/WAXS

APS High Energy X-ray Facilities

APS Collaborative Access Teams by Sector & Discipline

1-ID Capabilities

As of October 4, 2005:

Full time high-energy x-ray operation

Upgrade underway, Phase I nearly complete

Optimized for high-brilliance, high-energy x-rays

Typically 45 - 120 keV, fully tunable

Focusing to < 10 microns

Stability

Heavily oversubscribed (often 5X) for many years

Experimental scope

Stress/strain/texture measurements

HESAXS/WAXS

3DXRM (i.e., grain tracking)

PDF (including high-pressure)

High-resolution powder diffraction

Time-resolved (low-resolution) powder diffraction

Diffuse scattering

Fluorescence measurements

Optics development

1-ID Layout

1-ID Upgrade Plan

Performance of a Specialized High-Energy Undulators

	UA	HEX-1	HEX-2
Period (cm)	3.3	2.25	2.05
Length (m)	2.5	2.5	2.5
Number of Periods	72	111	122
Minimum gap (mm)	10.5	8.5 (6.5)	8.5
$B_{\text{max}}(T)$	0.85	0.6 (0.85)	0.5
K _{max}	2.62	1.26 (1.8)	1.0
Total Integrated Power	(5.4)	2.8 (5.7)	2.1
(kW)			
Integrated Power in	160	168 (234)	155
1 x 1 mm ² @ 30 m (W)			

11-ID Capabilities

```
Currently: Elliptical multi-pole wiggler, soon to upgrade to undulators
Three experimental stations
   11-ID-D: 4-50 keV
      EXAFS, XANES, time-resolved spectroscopy
   11-ID-B, fixed energies 60-95 keV:
      Magnetic Compton scattering (rarely used)
      PDF
   11-ID-C, fixed energies 60-115 keV:
      High-energy diffractometer
        Magnetic scattering
      Diffuse scattering
Scope
   Moving towards optimization for high-flux
   Lots of PDF (mostly for nanoscience, chemistry)
   Limiting scope due to staffing issues
   Currently oversubscribed roughly a factor of 2, but growing
```

11-ID Layout

Recent Workshops

- Workshop on High Energy X-rays Scattering at the APS (Argonne, Mar. 8 & 9, 2001)
 - APS Facilities
 - Plans for HEX-CAT presented
 - Crystallography (Coppens, Kramer, Wilkinson, Harlow, Argyriou, Petkov)
 - Stress/Strain/Texture (Withers, Dunand, Lienert, Marguiles, Ustundag, X. Wang)
 - General (Beckmann, Schneider, Honkimäki, Z. Zhong, Stock, Strempfer)
- Workshop on Science with High-Energy X-rays (Argonne, Aug. 9 & 10, 2004)
 - Two days, parallel sessions on second day
 - 28 speakers, wide range of science
- ANLBESUF 2006 Users Meeting--Texture and Strain Mapping with X-rays, Neutrons, and Electrons (May 4, 2006)
 - About 1/2 talks had high-energy x-ray work
- Petra III/GKSS Workshop: High Energy Beamline at DESY (Hamburg, Germany, June 30, 2006)
 - Shastri, Haeffner from the APS
- New Structural Science from Improved High Energy X-ray Sources (Argonne, July 13, 2006)
- New Applied Materials Research from Improved High Energy X-ray Sources (Argonne, July 28, 2006)

New Structural Science from Improved High Energy X-ray Sources

- July 13, 2006, 2:00 pm 5:00 pm
- Coordinators: B.H. Toby, D. R. Haeffner, P. Chupas

Talks

- Introduction—Dean Haeffner (APS)
- Application of PDF Measurements to Spatially Resolved and Time Resolved Measurements–Karena Chapman (APS)
- Opportunities for New High Pressure Science using High Energy X-ray Beams–John Parise (SUNY-Stony Brook)
- Resonant Scattering Employing High Energy X-Rays—Peter Lee (APS)
- Scattering Studies of Framework Materials At High Pressure
 – Joe Hriljac
 (U. of Birmingham, U.K.)
- Application of High Energy X-rays to Structural Studies ion Magnetic Fields—Yang Ren (APS)
- Discussion

The Pair Distribution Function Method

- Related to the probability of finding two atoms at a distance r
- For glasses, liquids, amorphous, nanocrystalline, heterogeneous, crystalline materials

Gives coordination #'s, atomic distances, ~particle size, structural modeling

High Real Space Resolution PDFs: The Need for High Q Measurements

$$Q_{max} = 4\pi \sin\theta/\lambda$$

for Cu K α , $\lambda = 1.54$ Å, $2\theta = 180$ °

$$Q_{max} = 4\pi \sin 90/1.54 = 8 \text{ Å}^{-1}$$

Need *Larger Detectors Coverage*and *shorter wavelengths*

$$Q_{\text{max}} = 10 \text{ Å}^{-1}$$

$$Q_{\text{max}} = 15 \text{ Å}^{-1}$$

$$Q_{\text{max}} = 20 \text{ Å}^{-1}$$

$$Q_{\text{max}} = 25 \text{ Å}^{-1}$$

The Application of Area Detectors to PDF Measurements

- Conventional Measurements
 - scanning <u>point-by-point</u> data collection
 - relatively slow <u>12-24 hr / PDF</u>
- Since 2002
 - area detectors imaging plate
 - simultaneously measures scattering intensity to high Q
 - Image plates faster but still <u>readout ~2min.</u>
 - enable parametric and in-situ studies
- Recent Developments (nb. APS Detector Pool)
 - GE amorphous Si
 - Readout as fast as ~30ms

Time-Resolved Studies of Chemical Processes:

Understanding Catalysis In-Situ

The reduction of Pt⁴⁺ supported on TiO₂ to Pt⁰ under H₂ at 200 °C

- •The data shown were collected at a rate of 0.5 second/PDF.
- •Data collection at a 33 millisecond rate (the fastest allowed by the GE *a*-Si detector) has been achieved.

P.J. Chupas, K.W. Chapman, C.P. Grey, P.L. Lee

Consensus Comments

- More flux on sample
 - Not necessarily brilliance
- Detectors fast 2D
- Detectors fast 2D
- Detectors fast 2D
- Sample environments
 - Dedicated to a station

New Applied Materials Research from Improved High Energy X-ray Sources

- July 28, 2006, 9:00 am 12:00 pm
- Coordinators: B.H. Toby, D. R. Haeffner, P. Chupas

Talks

- Introduction and Recap of Recent Workshops—Dean Haeffner (APS)
- High-Energy X-Ray Optics and the APS Upgrade—Sarvjit Shastri (APS)
- High-Energy SAXS/WAXS for Materials Research—Jon Almer (APS)
- Opportunities for 3DXRD at the APS–Ulrich Lienert (APS)
- New Possibilities for Strain Pole Figures

 Joel Bernier (APS)
- Discussion and Wrap Up

Studies of polycrystalline bulk materials

from Lienert

- metals, ceramics (structural, functional)
- In situ structural characterization during thermo-mechanical processing
- Surface not representative => High energies
- Micro-mechanical coupling of heterogeneous grains
- Length scales:
 - Defects: dislocations, precipitations (nm μm) micro (EM)
 - grains: (nm mm) meso
 - components: (> mm) macro (neutrons)

- Crystallographic phases: 1D
- Real space: 3D
- Orientation: 3D
- Strain: 6D
- Time: 1D
- Mapping of 14D parameter space
- Area detectors:
 - significant data acquisition rate
 - 'tomographic' diffraction: reconstruction software

Mesoscale Grain-Grain Interactions

U. Lienert, J. Almer (ANL), T. Leffers, L. Margulies, S. Nielsen, W. Pantleon, H.F. Poulsen, and S. Schmidt (*Risø National Lab, Denmark*)

Experimental Setup

Grain Orientation: GRAINDEX

- Oscillation images ($\Delta \omega = 1^{\circ}$) over extended ω range ($\pm 60^{\circ}$)
- Data acquisition rate detector limited

- Few minutes computing time, independent of no. of reflections
- Limit is set by spot overlap some 1000 grains

E.M. Lauridsen, S. Schmidt, R.M. Suter, H.F. Poulsen, J. Appl. Cryst. 34 (2001), 751

Diffraction Tracking

H.F. Poulsen *et al.*, J. Applied Cryst., 2001 R. Suter et al.

- Grain position, grain boundary topology
- Crystallographic phase & orientation

- Line focus
- Reflections by ω -rotation
- Projects grain cross section onto detector
- Backtracking => grain outline
- Grain orientation
- Some minutes per layer
- Limitation: mosaic spread

Need to improve:

Flux (emittance, IDs)

Focusing (optics)

Precision Instrumentation

Detectors

Software

- Grain growth
- Phase transformation
- Initial state before processing

High Energy Optics with APS Upgrade

From Shastri

Flux density gains

High Energy Undulator	4 - 10	Permanent magnet device
	Up to 40	Superconducting device
Emittance	6 - 7	High-demag, 2D focusing
	3	High-demag, 1D focusing
	2	No focusing
Ring current	2	
Longer IDs	?	

Optimized High-Energy Undulators

	Kmax	Min. gap (mm)	Period (cm)	Periods
UA	2.	11	3.3	70
PM	1.1 (1.5)	8.5 (7)	2.1	114
SC	1.2 (1.4)	8 (7)	1.45	165

7 GeV versus 6 GeV

Blue 7 GeV Black 6 GeV

It's a big deal

Red 7 GeV Black 6 GeV

Implication for High-Energy X-ray Science with ERLs, etc.

Other Upgrade Issues to Consider

- Conventional Facilities
 - HVAC at the APS is not where it should be
 - Walk into the 431 lobby for proof
 - Temperature control on floor, in stations, not adequate for extreme precision being proposed
- Office Space
 - LOMs are crowded and cannot house the desired number of staff
 - Lack of storage space is recurrent issue
- Computer Infrastructure
 - Lack of computer support is critical, cause of much inefficiency

Conclusions

- APS, ESRF, Spring-8, and in the future Petra-3 are superb sources of high-energy x-rays.
 - NSLS-2, SSRL, Diamond, SLS, etc. are not.
- The high-energy program at the APS is active in many areas
 - PDF
 - 3DXRD
 - WAXS for many applications
 - Diffuse Scattering
 - HESAXS

All will benefit from better undulators, lower emittance, better detectors, optimized beamlines

- Strong movement in the direction of kinetic, in situ experiments
- Concerns by many speakers about staffing levels and support for nonexpert users
- Huge opportunities for improvement in detectors
- Need to dedicate 11-ID to high-energies
- Possible expansion of high-energy facilities
 - Maybe HP/HE beamline

Future Scientific Areas for the APS

Which is more important?

